
ChatGPT, an advanced language model, presents an opportunity to enhance human-robot 
collaboration by integrating a custom voice assistant. This approach tackles a fundamental problem 
in human-robot interaction (HRI) e�ective communication between humans and machines. By 
combining ChatGPT's natural language processing capabilities with a tailored voice interface, users 
can communicate with robots in their native language. The solution involves training ChatGPT on 
multilingual datasets, optimizing responses for context-relevant interactions, and ensuring �exibility 
across robotic platforms. Compared to traditional HRI methods, ChatGPT-based voice assistants o�er 
several advantages. They enable more natural and intuitive communication, reducing the cognitive 
load on users. Additionally, the language model's contextual understanding and adaptive learning 
capabilities facilitate more personalized and engaging interactions. However, challenges persist, 
including potential biases inherited from training data, di�culty handling ambiguous queries, and 
ensuring factual accuracy. This paper reviews the applications of ChatGPT in HRI, highlighting its 
potential to revolutionize human-machine collaboration. It discusses the implementation approach, 
advantages, and limitations. Furthermore, it explores the role of natural language processing in 
a�ective computing and emotion recognition for enhanced social intelligence in robots. Overall, the 
integration of ChatGPT presents a promising avenue for advancing HRI towards more seamless, 
productive, and user-friendly interactions.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Figure 1. Comparative Model of AI, ML, Deep Learning and Generative AI.

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

Advantages Details References
Corrective Capability Users can correct ChatGPT if its response contains inaccuracies or misleading 

information.
[17,18]

Explanatory Ability ChatGPT can provide detailed explanations based on its responses. [17,18]

Enhanced Context 
Understanding

It can comprehend and respond to complex inputs, making it more e�ective in 
generating relevant text.

[19,20]

Reduced Biases E�orts are ongoing to minimize biases in training data, leading to more objective 
and balanced outputs.

[19,20]

Fine-Tuning Capabilities ChatGPT can be �ne-tuned for speci�c tasks, catering to the unique needs of 
researchers in various disciplines.

[19,20]

Table 1a. Advantages with ChatGPT.

Table 1b. Challenges with ChatGPT.

Disadvantages Details References
Inaccurate or Misleading 
Information

ChatGPT's responses may contain inaccuracies, as it relies on patterns learned 
from training data rather than deep understanding.

[16,19,21]

Hallucination �e content generated may sometimes be nonsensical, incorrect, or contain factual 
errors.

[16]

Knowledge Limitation Its knowledge is limited to the training data with a cuto� in 2021, making it unable 
to provide real-time updates or verify new developments.

[9,16,19]

Quality of Training Data It can be di�cult to ensure the quality of datasets required for generative AI. [16,19,20]

Handling Ambiguous 
Queries

ChatGPT may struggle with ambiguous questions, generating plausible-sounding 
but irrelevant responses.

[19,20]

Potential Harm It might provide harmful medical advice, generate fake accounts, create online 
scams, and threaten intellectual development and clerical jobs.

[16,21]

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

Figure 2. System workflow of ChatGPT-based robot.

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

Figure 3. Information Exchange of ChatGPT-based Robot.

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

Figure 4. The block diagram three major categories of robots.

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Modality Importance in A�ective Computing In�uential Parameters for Expressing Emotions
Facial 
Expression

Most crucial component in human 
communication 

N/A [18,53,54,55,56]

Body Language Provides strong and reliable cues to 
emotional state 

Whole body static postures, whole body 
movement, gestures

[18,57,58,59,60]

Speech Signi�cant in expressing emotions Pitch (level, range, variability), timing, loudness [18,61,62]

Table 2. Di�erent modalities in a�ective computing.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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Robot Name Type Function Uses
Kismet Expressive Robot 

with "Social 
Intelligence"

Eliciting normal social 
interaction, especially with 
children

Human-robot interaction, 
social interaction, expressive 
capabilities

[78,79]

MR Helper (Mobile 
Robot Helper)

Physical 
Interaction Robot

Dual manipulators for 
cooperative object 
manipulation

Assisting in daily tasks, medical 
applications, and home 
automation

[80-83] 

DR Helpers (Distributed
Robot Helpers)

Physical 
Interaction Robot

Transporting objects in 
collaboration with humans

Assisting in daily tasks, 
collaborative object transport

MS DanceR (Mobile 
Smart Dance Robot)

Physical 
Interaction Robot

Capable of dancing the waltz 
as a partner

Entertainment, �ne coordination
with a human during dancing

[80,81,84]

Wakamaru Humanoid Robot Studying human-robot 
proxemic behavior, 
investigating physical and 
psychological distancing

Guiding the design of robots 
integrating into human 
environments

[16,85,86]

ASIMO Humanoid 
Robots

Interactions with university 
students in various conditions, 
assessing subjective 
impressions and behaviors 
associated with each entity

Human-robot interactions, 
subjective impressions, 
nonverbal behaviors

[87,88]

Autom HCI-based 
Sociable Robot

Weight loss coach, compared 
impact with a standalone 
computer and a paper log in a 
controlled study

Long-term human-robot 
interaction, promoting 
successful weight loss and 
maintenance

[24,89-91]

Table 3. Di�erent types and uses of robots.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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�e development of ChatGPT represents a signi�cant advance 
in conversational AI, resulting from developments in deep 
learning models for natural language processing (NLP). Driven 
by the goal of developing more complex language models, 
ChatGPT is designed to comprehend and produce writing that 
resembles that of a human. It is an extension of OpenAI's GPT 
architecture. ChatGPT is an excellent tool for understanding 
context and providing pertinent responses because it is driven 
by transformer-based arti�cial neural networks with 
self-awareness processes and has been trained on large datasets. 
Chatbot technology has been transformed by its ability to 
capture semantic nuances and understand conversational 
context, allowing for e�ortless interactions between humans 
and machines. With uses for customer service, content creation, 
and language translation, ChatGPT has developed into a vital 
tool that has advanced conversational AI systems enormously.

 ChatGPT uses NLP and machine learning (ML) techniques 
to understand and respond to a wide variety of user inputs in a 
conversational way, in contrast to traditional Human-Computer 
Interaction (HCI) [1]. �e architecture of the model, which is 
indicated by the title "ChatGPT," blends the Generic Pretrained 
Transformer (GPT) architecture with an emphasis on text 
production and discussion. Originally created for natural 
language translation, transformers have developed into a 
well-known class of deep learning models for a range of NLP 
applications. By using attention methods, they can handle issues 
like long-term dependencies in sequence data [2].

 Machine interpretation and response to human commands 
have changed dramatically as a result of the combination of 
ML and (LLM) in HRI. Despite current ethical issues, this 
synergy improves robots' comprehension of natural language 
patterns and their capacity to work together productively in 
industries such as manufacturing, healthcare, education, and 
personal assistance. �is holds out the promise of a more 
adaptable and e�cient robotic workforce [1]. Robotics 
systems require a deep comprehension of real-world physics, 
the ability to perform physical actions, and contextual 
knowledge, in contrast to text-only applications. Robust 
commonsense knowledge, an advanced world model, and the 
ability to understand and carry out orders in a fashion that is 
both physically possible and makes sense in the real world are 
all necessary for generative robotics models. Token 
embedding models for language have been the main tool 
utilized in recent attempts to incorporate language into 
robotics systems [3]. Innovative tools are provided by social 
robotics, which studies human-robot interaction with an 
emphasis on social and emotional aspects.

1. Social engagement, in which robots generate an 
appropriate environment for social skills training. 

2. Supporting e�ective expression through communication.
3. Emotional regulation, identifying and reacting to 

emotional cues.
4. Personalized learning, adjusting interactions based on 

individual needs through machine learning. 

5. Encouraging social initiations through interaction. 
6. Applying robot-learned skills to social contexts in the real 

world.

 Social robots can improve assistance, but it cannot take the 
place of human interactions in an inclusive approach. With the 
capacity to apply acquired abilities to real-world situations, the 
Pepper robotic system and OpenAI technology are intended to 
be integrated in a way that maximizes their potential for 
e�ective modi�ed interactions [4].

Methodology
�e keywords for the review used were ChatGPT, Natural 
Language Processing, Machine Learning, Arti�cial Intelligence 
in assistive bots, ChatGPTt in Robots for HRI collected from 
various sources like IEE, OpenAI, arXiv. �ese keywords are 
o�en searched on Google Scholar. �e paper used for references 
was taken from the year 2000 at the least and the majority of the 
paper is from the recent 10 years since the development of 
ChatGPT. Arti�cial Intelligence (AI) has become increasingly 
prevalent in project management, o�ering new ways to 
optimize processes and enhance overall project performance. 
�e use of AI in project management can be categorized into 
three main areas:

Automation
AI can automate routine tasks, such as data entry, report 
generation, and scheduling, allowing project managers to focus 
on higher-level decision-making and strategy [5].

Analytics
AI-powered analytics tools can process vast amounts of data to 
uncover patterns, trends, and insights that would be di�cult or 
impossible for humans to detect manually [5].

Assistance
AI assistants, like ChatGPT-4, can provide support in various 
aspects of project management, from generating progress 
reports to facilitating communication among team members [5].  

ChatGPT as a Language Model
ChatGPT, developed by OpenAI, is a sophisticated language 
model based on the Generative Pre-trained Transformer (GPT) 
architecture. Its design enables the generation of human-like 
text, making it a key tool in �elds such as customer service, 
content creation, and human-robot interaction (HRI). 
ChatGPT's strength lies in its ability to understand and generate 
contextually relevant responses, facilitating natural and 
seamless communication between humans and machines. As a 
LLM, it combines deep learning and NLP techniques to create 
coherent and meaningful dialogues, making it invaluable for 
applications where human-like interaction is essential.

Key concepts and components
Attention mechanism: �is feature allows neural networks to 
focus on speci�c elements of incoming data, ensuring that the 
most relevant information is emphasized in the model’s 
response. �is improves response accuracy by concentrating on 
important contextual details.

Chatbot interference: ChatGPT functions as chatbot so�ware, 
mimicking human-user communication. It responds in a way 
that resembles real human conversations, which is essential for 

applications in customer service and interactive systems.

Generative model: Unlike models that only categorize or 
predict, ChatGPT is a generative model, meaning it creates new 
data, such as sentences or dialogues, based on the input it 
receives. �is allows it to produce creative, diverse, and relevant 
content.

Generative Pre-trained transformer (GPT): �e GPT 
architecture relies on training the model using both supervised 
and unsupervised methods, allowing it to understand and 
produce language similar to that of humans. �e model 
processes vast amounts of text data to learn patterns, context, 
and linguistic structures.

Language model: ChatGPT is a language model that produces 
human-like writing. It generates text by predicting the next 
word in a sequence based on the previous context, resulting in 
�uent, natural-sounding responses [6,7].

Multimodal neurons: �ese neural components can interpret 
data across multiple formats—text, voice, and 
images—enabling ChatGPT and similar models to interact with 
diverse types of input and output.

Natural language processing (NLP): NLP is the core of 
ChatGPT's operation, enabling the model to analyze, 
understand, and generate human language. It uses algorithms to 
interpret text and respond accurately to queries.

Neural network: A network of interconnected nodes, or 
neurons, that are trained to carry out speci�c tasks. In 
ChatGPT, these neural networks form the backbone of its ability 
to generate language and learn from interactions.

 Recent advancements in HRI, largely fueled by sophisticated 
models like ChatGPT, have enabled robots to collaborate with 
humans in more natural ways. Examples include the use of 
quadruped and wheeled robots in warehouses and hospitals, 
where they autonomously navigate and adapt to dynamic 
environments, reducing human workloads and improving 
e�ciency. Collaborative robots like Baxter are also utilized for 
tasks such as object manipulation. Inspired by generative 
models like GPT, a framework named RobotGPT has been 
developed to create various forms of robot intelligence. While 
ChatGPT provides a robust foundation for robot intelligence, 
the launch of GPT-4 in 2023 has introduced enhanced features 
like improved image understanding and more accurate 
responses, further expanding the capabilities of robots in 
intelligent interactions [1,8].

Comparison of ChatGPT with Gemini and Other Large 
Language Models (LLM)
�ere are various factors that in�uence the quality of responses 
in LLMs. A comparison between ChatGPT and Google's 
Gemini highlights several notable di�erences:

Data storage: Gemini is regularly updated with the latest 
information, allowing it to provide real-time responses. In 
contrast, ChatGPT's knowledge is static, capped at September 
2021 for now. �is means that any developments a�er this time 
will not be re�ected in ChatGPT’s responses [9,10].

Search capabilities: Gemini has the ability to perform real-time 
searches across the internet, which enables it to access more 
up-to-date and diverse information. ChatGPT, on the other 

hand, is not connected to real-time data sources and instead 
relies on its pre-existing knowledge and training, which limits 
its search scope.

Biases and accuracy: While both models are susceptible to 
biases due to the data on which they were trained, Gemini is 
designed to address some of these shortcomings by leveraging 
newer datasets. ChatGPT, though powerful, may occasionally 
present information that contains biases or factual inaccuracies, 
as it cannot verify information in real time.

Information detail: In general, Gemini tends to provide more 
detailed and up-to-date information compared to ChatGPT, 
due to its constant internet access and newer datasets. ChatGPT 
excels in generating comprehensive responses but may miss 
critical recent developments.

Accessibility: Gemini is designed for a broad range of users, 
including children, and provides simpli�ed, user-friendly 
responses. ChatGPT is also highly accessible but tends to o�er 
more text-based and technical responses tailored to more 
mature audiences.

Underlying technology: ChatGPT is based on the GPT 
architecture, which emphasizes NLP capabilities, including 
generating contextually rich and accurate text. Gemini, while 
also designed for conversational agents, focuses more on 
handling dynamic, real-time queries through advanced data 
processing systems [9,11].

Contextual understanding: ChatGPT demonstrates a broader 
ability to understand and generate context across a variety of 
scenarios, o�ering rich textual outputs in numerous contexts. 
While Gemini excels in conversational queries, ChatGPT o�en 
outperforms in situations requiring deeper, more intricate 
textual context.

Reaction speed: Gemini o�ers faster, more immediate 
responses, especially when dealing with real-time events or 
internet-connected queries. ChatGPT, while e�cient, operates 
at a slower pace in such cases due to its lack of real-time 
connectivity.

Model parameters: ChatGPT contains 175 billion parameters, 
giving it immense capability in generating diverse text and 
maintaining context. In comparison, Gemini utilizes a di�erent 
parameter structure with fewer parameters (1.37 billion), but 
compensates with a vast vocabulary, over 1.5 trillion words.

Plagiarism checking: ChatGPT includes a plagiarism-checking 
capability, which makes it useful for academic and content 
creation applications. Gemini currently lacks this function, 
limiting its utility in certain formal writing and content creation 
tasks.

Customer interaction: ChatGPT excels in customer 
interactions, particularly in FAQ responses and 
problem-solving due to its extensive NLP capabilities. Gemini, 
while e�ective in conversational responses, may not handle 
complex customer queries with the same level of nuance.

 Both ChatGPT and Gemini present unique strengths and 
limitations. Gemini's real-time access and simpli�ed interaction 
suit users looking for fast, up-to-date answers, but it sometimes 
provides unreliable sources or robotic-sounding responses. 
ChatGPT, in contrast, is superior in generating complex, 
well-rounded text, making it ideal for collaboration, text 
generation, and more nuanced queries, though it lacks real-time 
updates and picture-sharing capabilities. Together, these 
models demonstrate the diverse approaches to conversational 
AI in modern generative systems (Figure 1) [12,13].

unbalanced information sources, or biases embedded in the 
training data may be re�ected in the output of the model [16]. 
As shown in Tables 1a and 1b generalizes the Advantages and 
Disadvantages. ChatGPT has several limitations, including 

inherent biases in its training data, incomplete or outdated 
knowledge, and di�culty discerning factual accuracy. OpenAI’s 
ChatGPT is no doubt a breakthrough for the HRI Innovations. 
However, these limitations cannot be avoided, and build a 
proper strategy to overcome or bypass them.

 Robot and human communication may take many di�erent 
forms, and the type of communication that occurs greatly 
depends on the proximity the robot and human are to one 
another. As a result, there are two primary categories of 
interaction or communication:

1. Proximate interaction: �is happens when people and 
robots are physically near to one another.

2. Remote interaction: In this case, humans and robots are 
geographically or temporally apart.

 �ese proximity-based categories make it possible to 
distinguish between apps that need to be mobile, �exible 
physically, or sociable. Fundamentally, distinguishing between 
local and remote contact assists in determining the particular 
requirements and features of many scenarios involving 
human-robot communication [23,24].

 �e information exchange between humans and robots is 
achieved by interactions with the environment as shown in 
�gure 3 depending on which side the arbitration leans towards 
humans or robots [25]. As these applications imply, some forms 
of human-robot interaction involve direct physical contact 
o�en referred to as physical human-robot interaction (pHRI). 
While much of the literature related to pHRI has traditionally 
had a strong focus on ensuring safety during the interaction 
between humans and robots [26].

 �e nuances that de�ne our peers' voices and facial 
expressions during casual talks act as windows into their 
emotional states, exposing the underlying feelings linked to 
physiological changes in the larynx and vocal folds. Robots' 
comprehension of human speech and emotions is critical in the 
�eld of HRI. It uses automatic acoustic emotion recognition 
(AER), avoiding semantic considerations in favor of grammar, 
voice quality, and spectral data. For the purpose of feature 
extraction and classi�cation in AER, traditional machine 
learning techniques such as support vector machines, Gaussian 
mixture models, and hidden Markov models have been applied. 
However, more recently, deep learning techniques such as 
convolutional neural networks, recurrent neural networks, deep 
belief networks, and deep Boltzmann machines have shown to 
be more successful, indicating an improvement toward 
thorough emotion identi�cation [27,28].

 While the traditional focus of HRI research has been on the 
physical interactions between people and robots, with an 
emphasis on industrial robots, social intelligence which is 
represented by qualities like empathy has come into its own. A 
social robot needs to demonstrate its agency capability, use 
gestures, gaze in the right places, and behave in the right spaces 
in order to e�ectively communicate empathy. Together, these 
components improve the experience of human-robot contact in 
a way that goes beyond just the tangible [29]. Semantic 
comprehension problems in the context of social robots are 
accomplished by means of feature extraction, which tackles 
issues like gender detection, age estimation, speaker localization, 
voice recognition, and speech-based perceptual semantics. �ese 
jobs entail deciphering spoken conversations and extracting 
pertinent information, allowing social robots to communicate 
more e�ectively based on various voice-related characteristics 
[23]. It is critical to design an assistive, intuitive social robot that 
will improve autonomy and quality of life for senior citizens 
su�ering from cognitive disorders such as Alzheimer's [30].

Physical Human Interaction
Building a solid partnership is essential in the �eld of HRI if 
robots are to perform as fully functional members of a team, 
particularly under pressure. It becomes clear that trust is a 
crucial component that a�ects decision-making, acceptance of 
information, and system performance as a whole. �e study 
highlights how robot attributes, especially performance, a�ect 
the formation of trust, highlighting the necessity of taking these 
aspects into account when designing and training human-robot 
interaction systems [31]. Likewise, the di�culties in 
guaranteeing safe physical HRI are examined, highlighting 
metrics related to dependability and safety. Strict analysis of 
collision risks and possible injuries during human-robot 
interaction clari�es safety requirements and severity indices. 
�e thorough investigation seeks to provide a solid basis for the 
safe incorporation of robots into a variety of human 
environments [32,33].

 Analyzing the industrial, professional service, and personal 
service sectors of robots reveals di�erent applications and 
degrees of autonomy. �e transition to service robots poses new 
di�culties for human-robot interaction, bringing up issues with 
interfaces and communication strategies for a range of 
interactions. �e study highlights unanswered concerns about 
the in�uence of physical appearance, interface scalability, 
autonomy's function, and the direction that human-robot 
interaction will take in emerging applications [34]. On top of 
that, the utilization of industrial robotics in the oil and gas sector 
underscores the necessity for enhanced automation in 
demanding conditions. Particularly in cases involving robot 
collaboration or the replacement of human operators, trust, 
accountability, and organizational integration are all factors [35].

 Looking into how humans perceive a robot's physical versus 
virtual presence during cooperative tasks shows how vital 
physical presence is in fostering engagement, trust, and respect. 
Researchers found that subjects were more likely to follow 
instructions and provide a physically present robot more 
personal space, which emphasizes the need of taking presence as 
a factor when creating successful human-robot interactions 
[36,37]. For urban search and rescue operations, challenges in 
rescue robots include minimizing the human-to-robot ratio, 
resolving communication problems, and guaranteeing 
acceptance within social structures. �e analysis emphasizes how 
critical it is for people to evaluate sensor data and make crucial 

decisions during high-stress missions, which is why it matters 
that robots and communication technology advance [38].

 Even though it faces di�culties such as precisely measuring 
preferences, a behavior adaptation system for robots in 
human-robot interactions uses policy gradient reinforcement 
learning (PGRL) to modify important parameters based on 
human comfort signals, demonstrating encouraging results in a 
pilot study with a humanoid robot [39]. A di�erent experiment 
assesses how an innovative robot a�ects human observers, 
emphasizing the role that gaze control plays in improving 
interaction experiences and pinpointing important elements 
such as comfort and enjoyment in human perceptions of the 
robot [40]. Humans and robots can communicate using a 
variety of approaches, which raises concerns regarding interface 
design, the signi�cance of physical appearance, the scalability of 
these methods to group settings, the relevance of autonomy, and 
the potential evolution of human-robot interaction in 
upcoming applications [34]. �e three main kinds of robots, 
their di�culties in interacting with humans, and the results of 
the analysis along with related open questions are shown in this 
block diagram in Figure 4.

interaction, considering complex, dynamic control systems, 
autonomy, and real-world environments. �e proposed theory 
introduces �ve interaction roles: supervisor, operator, 
teammate, bystander, and mechanic, each with distinct tasks 
and situational awareness needs. �e dimensions of mobile 
robots' physical nature, dynamic behavior, environmental 
challenges, the number of systems users interact with, and the 
robot's autonomy are discussed. [44]

 Real-time movement adaption using a proposed so�ware 
architecture is emphasized in the focus on developing 
companion robots for physical interaction. Prioritizing 
comfort, safety, and socially acceptable behavior, grip planning 
is discussed, with a focus on double grasps in human-robot 
interactions. Real-time trajectory changes based on cubic 
functions are used to address motion planning issues, and an 
attentional system is used to strike a compromise between task 
e�cacy and safe interaction. �e ultimate goal is to create 
manipulator robots that are safe, intuitive, and able to work 
together in shared workspaces [45,46]. �e di�culties in 
ensuring safety as well as appropriate degrees of trust in 
human-robot interactions must be taken into account in order 
to increase safety, particularly in home and healthcare settings 
where robots can communicate with vulnerable populations 
without professional supervision. It brings up moral questions 
regarding how to do safe and realistic experiments on trust 
without endangering subjects [47].

 Examining the critical role that machine learning algorithms 
play in HRI, on signal interpretation and communicative action 
generation across many channels, including touch, sight, and 
hearing. Obstacles and advances in each domain and highlights 
the importance of benchmarking for performance evaluation of 
interactive robots. In order to achieve market acceptance, it 
emphasizes the necessity of certi�cation procedures and stresses 
the importance of taking psychological, social, and practical 
factors into account when creating e�ective HRI 
communication. �e information o�ered clari�ed the state of 
social robot development and the possibility of their 
commercialization [48]. Furthermore, an investigation into the 
hand-over task using wooden cubes indicates that 
human-to-human interactions can exhibit adaptive learning, as 
seen by a consistent reduction in hand-over duration across 
trials. �e use of a minimum-jerk pro�le by a humanoid robot 
during the hand-over resulted in much shorter reaction times in 
robot-human interactions, highlighting the signi�cance of 
imitating biological motion. Although there are some 
discrepancies, the study indicates that human-robot hand-over 
interactions can be made e�cient and predictable by present 
robot technology, which can lead to the development of e�cient 
joint-action techniques in humanoid robot systems [49].

 Challenges and considerations in developing courses on HRI 
for computer science and engineering students. Recognizing the 
multidisciplinary nature of HRI and the lack of standardized 
educational materials. It addresses challenges such as the 
diversity of the �eld, the lack of dedicated resources, and the 
need for cost-e�ective robots and outlines suggested course 
content, including topics like emotion, ethics, robot design, and 
social behaviors.  Emphasizing the necessity of a statistical 
background and the importance of considering industry needs 
in course development. �e �ndings aim to contribute to the 
ongoing discussion and development of HRI education [50].

Advantages and Limitations of ChatGPT 

Implementing OpenAI’s ChatGPT AI model into self-governing 
systems o�ers an innovative method to improve human-robot 
communication and decision-making processes. By utilizing 
ChatGPT's contextual knowledge, dynamic adaptability, and 
strong reasoning powers, robots may interpret user inquiries, 
adjust to real-time facts, and carry out comprehensive analysis 
for well-informed decision-making [14]. �e system prioritizes 
human-like interaction, which promotes trust and eases 
user-to-user communication. A data �ow graphic embedded in 
the text highlights the adaptability and ongoing learning of the 

system and discusses ChatGPT's handling of linguistic 
ambiguity and complexity, which is essential for 
comprehending complex user instructions. �e study highlights 
ChatGPT's bene�ts in answering complex inquiries, assisting 
with coding, creating visuals, creating music, and o�ering 
medical assistance, despite downsides such as infrequent 
nonsense creation, sensitivity to word choice, and limitations in 
post-2021 event interpretation [15].
 �e quality of training data is another challenge faced by 
generative AI. �e quality of generative AI models largely 
depends on the quality of the training data. Any factual errors, 

HRI with NLP System Design
�e �eld of HRI is currently going through an abrupt 
transformation as a result of the adoption of arti�cial intelligence 
(AI), which has the potential to greatly expand robot capabilities. 
�rough the use of advanced characteristics like machine learning, 
logical reasoning, and natural language processing, AI enables 
robots to interact with humans more naturally and responsively. 
�is progress might lead to more seamless interactions with robots 
across a range of �elds, therefore simplifying our lives. Figure 2 

shows a work�ow ChatGPT-based robot where speech-to-text and 
text-to-speech along with GPT is integrated with a robot.

 By considering the contextual information and evaluating the 
ambiguity of information, GPT3.5 generates natural responses to 
either further clarify the information with the human operators 
via conversations or control the robot. When communicating with 
human operators, the ChatGPT Robot AI assistant generates 
prompts, presents the prompts to human operators, and waits for 
further instructions [22].

 Subsequently, a study that divides 42 measures into three 
categories human, robot, and system reveals issues with 
precisely evaluating features. �e measurements ignore the 
particular issues faced by remote presence applications in favor 
of taskable agents and social domains [41]. A further 
assessment examines the current state of social gaze in HRI and 
divides research into three categories: technology, design, and 
human centers. �e importance of physical appearance in gaze 
capabilities and costs is addressed, along with a discussion of 
many sorts of gazes and their interpretations. Physical gaze 
functions, micro vs macro-scale reactions, and the integration 
of gaze with other social behaviors in HRI are among the 
unanswered questions [42].

 As robots become more autonomous, it distinguishes HRI 
from traditional human-computer interaction, considering 
factors like dynamic control systems, autonomy, and real-world 
environments. Five interaction roles (supervisor, operator, 
teammate, bystander, and mechanic) with speci�c tasks and 
awareness needs, It discusses aspects of mobile robots, such as 
their physical nature, dynamic behavior, environmental 
challenges, and autonomy. �e key focus is on collaborative 
control, situational awareness evaluation, and a 
multidisciplinary approach to successful HRI, covering both 
user interface design and robot so�ware architectures [37,43]. 
�e di�erences between HRI and traditional human-computer 

 Researchers have been using hashtags to build training 
datasets for emotion identi�cation in brief communications in 
recent studies investigating applications of NLP. Unigrams 
outperformed bigrams and trigrams, reaching approximately 
65.12% accuracy, in the studies, which underscore the 
di�culties of distinguishing emotions in brief textual content 
and the possibilities of using social media data [51,52]. An 
additional sophisticated framework is dedicated to the 
extraction of emotions from multilingual text data on social 
media, with a speci�c focus on political elections, medical 
events, and sporting occasions. Emotion theories and machine 
learning methods are combined in this framework, which has 
been shown to improve a�ective interfaces and ease 
decision-making [51,52].
 �e oil and gas industry's use of industrial robotics 
highlights the need for further automation in challenging 
conditions. �e limitations of conventional industrial robots are 
discussed, with a focus on issues of adaptation and worries 
about trust, accountability, and organizational integration in 
situations where humans and robots work together or are 
replaced [35]. A study investigates the physical ranges and 
orientation between human users and service robots, focusing 
on co-presence and embodied engagement in (HRI. Results 
highlight how important spatial awareness is for creating 
socially acceptable robots, urging more research into behavior 
patterns and design improvements [63].
 An NLP-based study looks into the emotional aspects of 
conservation issues with the reintroduction of wolves in Saxony, 
Germany. Anger (74%) and fear (36%) are the most common 
negative emotions seen in news items, and they are linked to 
important stakeholders like farmers and hunters. �e study 
highlights the in�uence of news organizations on public 
attitudes and argues for a more balanced portrayal of 
human-wildlife interaction [35]. An additional interdisciplinary 
project analyzes how NLP, human-computer interaction, and 
mental health research connect, with a particular focus on NLP 
methods for leveraging social media data to assist mental health. 
�e review emphasizes cooperation and a common language 
among researchers by providing a taxonomy of data sources, 
methodologies, and interventions [64,65].

 Machine learning plays a key role in human-robot 
communication, especially when it comes to processing 
information from accelerometers, touch sensors, voice 
recognition so�ware, and image material. For voice commands 
and sophisticated speech-controlled apps to integrate 
seamlessly, behaviour generation including planning and 
execution is necessary [48,66]. Developments in data 
accessibility, computational power, and machine learning have 
led to investigation in applications including image-to-text 
generation and social media content production, 
demonstrating the growing interest in NLP across a range of 
areas. According to the survey, multidisciplinary work requires 
more cooperation with di�erent disciplines [67]. 

 Evolving as an interdisciplinary area, Socially Assistive 
Robotics (SAR) focuses on creating robots that assist in social 
interactions. SAR emphasizes safe, moral, and productive 
interactions and o�ers potential as a therapeutic technique for a 
variety of populations [18]. �e combination of NLP and 
computer vision helps people with vision problems; these 
applications can be used in the real world [68,69]. �e 
development of NLP-based social robotics research over the 
course of two decades reveals a di�erence between "Hard HRI" 
and "So� HRI," indicating ongoing progress in the �eld [68,69].

 Furthermore, the incorporation of NLP methods into social 
robotics improves verbal communication; this highlights the 
fact that social robots currently rely on crude language 
generation, and it suggests that NLG researchers and developers 
work together to create more complex interactions [70,71]. NLP 
is used to extract user data, interests, and hobbies for tailored 
interactions in an extensive conversation system that is 
proposed for natural engagement with social robots. 
Experiments with college students validate the potential of NLP 
in user modeling for socially intelligent robots, as shown by the 
adaptive conversation system [70,71]. Table 2 covers signi�cant 
factors for conveying emotions and emphasizes the signi�cance 
of various modalities in a�ective computing. Human 
communication relies heavily on facial expressions, body 
language uses postures and gestures to give signi�cant 
emotional indications, and voice uses timing, loudness, and 
pitch to transmit emotions.

Challenges with ChatGPT HRI and NLP
Prompting LLMs for robotics control poses several challenges, 
such as providing a complete and accurate description of the 
problem, identifying the right set of allowable function calls and 
APIs, and biasing the answer structure with special arguments 
[3,18]. 

 First, we de�ne a high-level robot function library. �is 
library can be speci�c to the form factor or scenario of interest 
and should map to actual implementations on the robot 
platform while being named descriptively enough for ChatGPT 

to follow. Next, we build a prompt for ChatGPT which describes 
the objective while also identifying the set of allowed high-level 
functions from the library. �e prompt can also contain 
information about constraints, or how ChatGPT should 
structure its responses. �e user stays in the loop to evaluate 
code output by ChatGPT, either through direct analysis or 
through simulation, and provides feedback to ChatGPT on the 
quality and safety of the output code. A�er iterating on the 
ChatGPT-generated implementations, the �nal code can be 
deployed onto the robot [3].

  Microso� is looking into how ChatGPT can make it easier to 
program assistive robots. Non-technical users may give 
high-level input in plain English to ChatGPT, which then 
generates Python code for the robots instead of engineers 
physically constructing code. �is method does away with the 
requirement for deep coding knowledge, making programming 
simpler and e�cient [3]. Chat-GPT models can now 
understand text messages and produce responses that mimic 
those of a human. With the use of this natural language 
learning, the robot is able to carry on logical conversations with 
users, interpreting spoken and typed inputs while keeping the 
interaction within context [72].

  ChatGPT is limited by the fact that it was trained on a 
limited dataset, which leaves it vulnerable to biases and 
mistakes in language interpretation. It might not work well, for 
instance, if it has been trained to anticipate a given value for a 
place but meets an unexpected one. It can, however, behave 
appropriately if provided with the relevant information. �is 
highlights how crucial it is to thoroughly plan and verify user 
manuals before deploying ChatGPT. It is important to consider 
and deal with these challenges when developing models that 
rely on language models, such as ChatGPT, for human-robot 
interaction [73-77]. Table 3 below shows a list of robot that are 
being built for research with various functionality and uses that 
are making our everyday life fun and easier.

Conclusions
�e future of AI creativity emphasizes the widespread adoption 
of AI skills across industries and the collaborative creation 
between humans and AI. It highlights educational initiatives 
making AI education inclusive, addresses challenges like 
pre-mature AI technologies and security issues, and stresses the 
importance of exploring AI education systems. �e article also 
advocates for integrating liberal arts with AI, fostering both AI 
thinking and skills, and ultimately democratizing AI and 
creativity. Despite the cons and pros of ChatGPT-based HRI, 
many things can be considered for further study and 
improvements. Improved AI models as AI technology 
continues to advance, we can expect more accurate and reliable 
models that minimize biases, better understand context, and 
provide even more valuable assistance to researchers. However, 
the reliability and safety must be carefully examined to avoid 
potential hallucinations or harmful unintended outputs. 

ChatGPT could be trained to learn from its interactions with 
users, and continually improve its responses and capabilities. 
NLP models can enhance the understanding of psychotherapy 
processes and emotions, providing a potential alternative to 
traditional methods. Limitations include the need for clearer 
emotion de�nitions and instructions. �e �ndings o�er 
implications for research, supervision in clinical practice, and 
the potential of NLP in advancing psychotherapy science. �e 
signi�cance of customer support and the application of NLP 
and AI, particularly chatbots, to enhance communication 
e�ciency. Its primary aim is to develop an AI agent for 
automatic chat conversation generation using NLP and deep 
learning. Evaluation metrics such as BLEU score and cosine 
similarity validate LSTM's superior performance. NLP's crucial 
role in reducing call center reliance is highlighted, focusing on 
IT customer service chatbots. �is method of learning can be 
further integrated with robots for better interactions. In a 

nutshell, ChatGPT's integration with HRI has the potential to 
completely transform how humans interact and work with 
robots. Robotic conversations become more natural and 
approachable because of ChatGPT's natural language 
production and understanding capabilities. Ongoing attention 
is necessary to address persistent di�culties such as ethical 
considerations, biases, and contextual knowledge. In 
human-robot interactions, ChatGPT's capacity to decode 
requests from users and o�er informative responses improves 
the user experience overall. With ongoing research and 
development aimed at addressing the current obstacles, 
ChatGPT and HRI's collaboration might be a key factor in 
creating a future where people and robots work together 
seamlessly to improve productivity and convenience. �e route 
to improving these technologies is a dynamic one that might 
lead to the emergence of a new age of intelligent and 
compassionate human-robot communication.
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